Unfolded state of polyalanine is a segmented polyproline II helix.

نویسندگان

  • Alex Kentsis
  • Mihaly Mezei
  • Tatyana Gindin
  • Roman Osman
چکیده

Definition of the unfolded state of proteins is essential for understanding their stability and folding on biological timescales. Here, we find that under near physiological conditions the configurational ensemble of the unfolded state of the simplest protein structure, polyalanine alpha-helix, cannot be described by the commonly used Flory random coil model, in which configurational probabilities are derived from conformational preferences of individual residues. We utilize novel effectively ergodic sampling algorithms in the presence of explicit aqueous solvation, and observe water-mediated formation of polyproline II helical (P(II)) structure in the natively unfolded state of polyalanine, and its facilitation of alpha-helix formation in longer peptides. The segmented P(II) helical coil preorganizes the unfolded state ensemble for folding pathway entry by reducing the conformational space available to the diffusive search. Thus, as much as half of the folding search in polyalanine is accomplished by preorganization of the unfolded state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of local and residual structures on the scaling behavior and dimensions of unfolded proteins.

Although recent spectroscopic studies of chemically denatured proteins hint at significant nonrandom residual structure, the results of extensive small angle X-ray scattering studies suggest random coil behavior, calling for a coherent understanding of these seemingly contradicting observations. Here, we report the results of a Monte Carlo study of the effects of two types of local structures, ...

متن کامل

Polyproline II helix is the preferred conformation for unfolded polyalanine in water.

Does aqueous solvent discriminate among peptide conformers? To address this question, we computed the solvation free energy of a blocked, 12-residue polyalanyl-peptide in explicit water and analyzed its solvent structure. The peptide was modeled in each of 4 conformers: alpha-helix, antiparallel beta-strand, parallel beta-strand, and polyproline II helix (P(II)). Monte Carlo simulations in the ...

متن کامل

The solvation interface is a determining factor in peptide conformational preferences.

The 21 residue polyalanine-based F(s) peptide was studied using thousands of long, explicit solvent, atomistic molecular dynamics simulations that reached equilibrium at the ensemble level. Peptide conformational preference as a function of hydrophobicity was examined using a spectrum of explicit solvent models, and the peptide length-dependence of the hydrophilic and hydrophobic components of ...

متن کامل

n→π* interactions in poly(lactic acid) suggest a role in protein folding.

Poly(lactic acid) (PLA) is a versatile synthetic polyester. We noted that this depsipeptide analog of polyalanine has a helical structure that resembles a polyproline II helix. Using natural bond orbital analysis, we find that n→π* interactions between sequential ester carbonyl groups contribute 0.44 kcal mol(-1) per monomer to the conformational stability of PLA helices. We conclude that analo...

متن کامل

Helix, sheet, and polyproline II frequencies and strong nearest neighbor effects in a restricted coil library.

A central issue in protein folding is the degree to which each residue's backbone conformational preferences stabilize the native state. We have studied the conformational preferences of each amino acid when the amino acid is not constrained to be in a regular secondary structure. In this large but highly restricted coil library, the backbone preferentially adopts dihedral angles consistent wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteins

دوره 55 3  شماره 

صفحات  -

تاریخ انتشار 2004